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LETTER TO THE EDITOR 

Lame equation, sl(2) algebra and isospectral deformations 

A V Turbiner 
Institute for Theoretical and Experimental Physics, B Cheremushkinskaya ul 89, 117 259 
Moscow, USSR 

, 

Received 15 August 1988 

Abstract. It is proved that the n-zone Lame equation is equivalent to a spectral problem 
for a quadratic element of a universal enveloping sI(2) algebra. The Riemannian surface 
corresponding to the eigenstates in a parametric space forms the ( 2 n  + 1)-sheet surface 
which splits in four subsurfaces; three of them contain the same number of sheets. 

Let us take the n-zone Lame equation 

-d2$/dx2+ n(n + l ) P ( x ) $  = A$ 

where P ( x )  is the Weierstrass function in a standard notation, namely a double-periodic 
meromorphic function for which the equation PI2 = (9 - e , ) (  9 - e,)( P - e,) holds. It 
is known [ l ]  that instead of equation (1) the new equation emerges 

if the new variable & =  9 ( x ) + i C  a, is introduced, where ~ ( 5 ) =  +(x) .  Here the new 
parameters a, satisfy the system of linear equations e, = a, -4 X a,. Equation (2) is 
named by an algebraic form for the Lame equation. There exists a spectral parameter 
A for which equation (2) has four types of solutions: 

= p (6) (3) 

7p = (5 - a,)  l lZP( 5) i = l , 2 , 3  (4) 

q j 3 )  = (5 - a, )  ( 5 )  

9 ( 4 ) =  ( ~ - a , ) 1 ' 2 ( 5 - a 2 ) l ' 2 ( 5 - a 3 ) 1 ' * P ( 5 )  (6) 

5 - a , )  l'*P( 6) I #  m ;  i # 1, m ;  i =  i ,  2,3 

where P ( 5 )  is a polynomial in 5. If the value of parameter n is fixed, there are (2n + 1) 
linear independent solutions of the following form: if n = 2k is even, then the ~ ( " ( 6 )  
and 77(3'(5) solutions arise, if n = 2k+ 1 is odd we have solutions of the ~ ( ~ ' ( 5 )  and 
7t4)(5) types. 

Theorem 1. The spectral problem (1) with polynomial solutions (3)-(6) is equivalent 
to the spectral one for the quadratic element of universal enveloping sl(2) algebra: 
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The parameters b, depend upon the type of solutions (3 ) - (6 )  and are equal to 

b+= - 6 k - 2  

b+= -6k -6  b o = 4 ( k + 2 )  U ,  + ~ " 0 -  U,  

bo = 4 ( k +  1) 1 U ,  + ao0 b . = -2 ( k + 1 ) U,U, ( 3 a )  

b- = -2( k + 1) U,U, - ~ u , u ,  i # l , m  ( 4 a )  

b- = -2( k + 2 )  C U,U, + ~ u / u ,  ( 5 a )  

b+= -6k -4  bo= 4 ( k +  1) C a, + uO0+4u, 

i # l , m  

b+= -6k -8  bo = 4( k + 2 )  1 U, + U,, b - = - 2 ( k + 2 ) C  u,u,. ( 6 a )  

Here J * > O  are the sl(2) generators 

J+ = 6' d/d( - 2j.5 J o = t d / d ( - j  J- = d/d& 

where 

j = i k  for ( 3 )  and (4) 
j='k-' 2 2  for ( 5 )  and ( 6 )  (9) 

is a spin of the representation considered. 
The validity of this theorem can be checked by substituting the expressions for 

generators into equation (7)  provided conditions ( 3 a ) - ( 6 a ) ,  ( 8 )  and (9) are satisfied. 
So, each type of solution (3 ) - (6 )  corresponds to the particular spectral problem 

(7)  with a special set of parameters. It can be easily shown that the calculation of 
eigenvalues A corresponds to the solution of a characteristic equation for the four- 
diagonal matrix: 

A, , - ,=(Z-1-2j)[4( j+l-Z)+6+] 

A , ,  = [ l(2j  + 1 - Z)(u+- + aoo) - (Z+j2)uoo+ ( I  - j )bo]  

A,,/+, = ( I  + 1 )( j - 1 )  a,- + ( I  + 1) b- 
(10) 

A/,l+2= - ( I  + 1 ) ( 1 + 2 ) ~ - - .  

The size of this matrix is ( k + l ) x  ( k + l )  for ( 3 )  and ( 4 )  and k x  k for ( 5 )  and (6 ) .  As 
a consequence of theorem 1 it is possible to prove a second theorem. 

Theorem 2. The parametric ( 2 n  + 1)-sheet Riemannian surface of eigenvalues of 
equation (1) in parameter ai at fixed parameters n and a, ( j  # i)  contains four 
disconnected pieces: one of them corresponds to T ( ' ) (  T ' ~ ) )  solutions and the others 
correspond to T ( ~ ) ( T ( ~ ) ) .  At n = 2 k  the Riemannian subsurface for r ] ( ' )  has ( k +  1) 
sheets and the number in each of the others is k. At n = 2k+ 1 the number of sheets 
for 77(4) is k and for T ( ~ )  each surface contains ( k  + 1) sheets. 

It is worth emphasising that we cannot find a relation between the two-zone potential 
3 3 

v = - 2  1 P P ( x - x i )  1 x i = o  (11) 
i = l  i = l  

(see [ 2 ] )  and the spectral problem (7) at n = 2 (potential (11) is related to the Lame 
potential (1) by isospectral deformation). In this case eigenvalues A do not depend 
on parameters a,,, a-- (see equation (8)). 
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However, at n = 2 there is a spectral deformation (1) other than (1 1). It arises from 
the fact that the addition to the operator ( 7 )  of the term a++J-J+ does not change the 
characteristic matrix (10). To obtain its explicit form, one can substitute the generators 
.TIso into equation ( 7 )  with the additional term above. The resulting equation then 
reduces to the Schrodinger form (compare [3]). As a final result, we obtain 

V ( x )  = a++ [ 2 a + + t 6 -  (a+- + a00)54-2a0-t3 -3a--521/P:(t) + P2(t) (12) 
where 

In general, the potential (12) contains four double poles in x and does not reduce to 
(11). It is worth noting that the eigenfunctions for (12) have the form 

Here 5 is given by (13). The first five eigenvalues of the potential (12) do not depend 
on the parameters a,,, a-.., a++. 

In conclusion I would like to acknowledge I M Gel'fand and S P Novikov for suggesting 
the problem and I M Krichiver and B A Dubrovin for useful discussions. 

Note added in proof: After submitting this work for publication, 1 learned about the paper [4] and references 
therein with a rather similar representation (see (7)) of the Lame equation but in a Jacobi form. In addition, 
quasi-exactly-solvable problems associated with the Lame equation were also discovered in [4]. All of them 
belong to a general class of one-dimensional quasi-exactly-solvable problems described in [3]. 
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