Lame equation, $\mathrm{sl}(2)$ algebra and isospectral deformations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L1
(http://iopscience.iop.org/0305-4470/22/1/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:41

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Lame equation, sl(2) algebra and isospectral deformations

A V Turbiner
Institute for Theoretical and Experimental Physics, B Cheremushkinskaya ul 89, 117259 Moscow, USSR

Received 15 August 1988

Abstract

It is proved that the n-zone Lame equation is equivalent to a spectral problem for a quadratic element of a universal enveloping sl(2) algebra. The Riemannian surface corresponding to the eigenstates in a parametric space forms the $(2 n+1)$-sheet surface which splits in four subsurfaces; three of them contain the same number of sheets.

Let us take the n-zone Lame equation

$$
\begin{equation*}
-\mathrm{d}^{2} \psi / \mathrm{d} x^{2}+n(n+1) \mathscr{P}(x) \psi=\lambda \psi \tag{1}
\end{equation*}
$$

where $\mathscr{P}(x)$ is the Weierstrass function in a standard notation, namely a double-periodic meromorphic function for which the equation $\mathscr{P}^{\prime 2}=\left(\mathscr{P}-\theta_{1}\right)\left(\mathscr{P}-\theta_{2}\right)\left(\mathscr{P}-\theta_{3}\right)$ holds. It is known [1] that instead of equation (1) the new equation emerges
$\eta^{\prime \prime}+\frac{1}{2}\left(\frac{1}{\xi-a_{1}}+\frac{1}{\xi-a_{2}}+\frac{1}{\xi-a_{3}}\right) \eta^{\prime}-\frac{n(n+1) \xi+\lambda}{4\left(\xi-a_{1}\right)\left(\xi-a_{2}\right)\left(\xi-a_{3}\right)} \eta=0$
if the new variable $\xi=\mathscr{P}(x)+\frac{1}{3} \sum a_{i}$ is introduced, where $\eta(\xi) \equiv \psi(x)$. Here the new parameters a_{i} satisfy the system of linear equations $e_{i}=a_{i}-\frac{1}{3} \sum a_{i}$. Equation (2) is named by an algebraic form for the Lame equation. There exists a spectral parameter λ for which equation (2) has four types of solutions:

$$
\begin{align*}
& \eta^{(1)}=P(\xi) \tag{3}\\
& \eta_{i}^{(2)}=\left(\xi-a_{i}\right)^{1 / 2} P(\xi) \quad i=1,2,3 \tag{4}\\
& \eta_{i}^{(3)}=\left(\xi-a_{i}\right)^{1 / 2}\left(\xi-a_{m}\right)^{1 / 2} P(\xi) \quad l \neq m ; i \neq l, m ; i=1,2,3 \tag{5}\\
& \eta^{(4)}=\left(\xi-a_{1}\right)^{1 / 2}\left(\xi-a_{2}\right)^{1 / 2}\left(\xi-a_{3}\right)^{1 / 2} P(\xi) \tag{6}
\end{align*}
$$

where $P(\xi)$ is a polynomial in ξ. If the value of parameter n is fixed, there are $(2 n+1)$ linear independent solutions of the following form: if $n=2 k$ is even, then the $\eta^{(1)}(\xi)$ and $\eta^{(3)}(\xi)$ solutions arise, if $n=2 k+1$ is odd we have solutions of the $\eta^{(2)}(\xi)$ and $\eta^{(4)}(\xi)$ types.

Theorem 1. The spectral problem (1) with polynomial solutions (3)-(6) is equivalent to the spectral one for the quadratic element of universal enveloping $\mathrm{sl}(2)$ algebra:

$$
\begin{gather*}
\left\{-a_{+0} J^{+} J^{0}-a_{+-} J^{+} J^{-}-a_{00} J^{0} J^{0}-a_{0-} J^{0} J^{-}-a_{--} J^{-} J^{-}\right. \\
\left.+b_{+} J^{+}+b_{0} J^{0}+b_{-} J^{-}\right\} \eta^{(i)}=\lambda \eta^{(i)} \tag{7}
\end{gather*}
$$

where
$a_{+0}=4 \quad a_{+-}+a_{00}=-4 \sum a_{i} \quad a_{0-}=4 \sum a_{i} a_{j} \quad a_{--}=a_{1} a_{2} a_{3}$.

The parameters b_{i} depend upon the type of solutions (3)-(6) and are equal to
$b_{+}=-6 k-2 \quad b_{0}=4(k+1) \sum a_{i}+a_{00} \quad b_{-}=-2(k+1) \sum a_{i} a_{j}$
$b_{+}=-6 k-6 \quad b_{0}=4(k+2) \sum a_{i}+a_{00}-a_{i}$

$$
\begin{equation*}
b_{-}=-2(k+1) \sum a_{i} a_{j}-4 a_{i} a_{m} \quad i \neq l, m \tag{4a}
\end{equation*}
$$

$b_{+}=-6 k-4 \quad b_{0}=4(k+1) \sum a_{i}+a_{00}+4 a_{i}$
$b_{-}=-2(k+2) \sum a_{i} a_{j}+4 a_{i} a_{m} \quad i \neq l, m$
$b_{+}=-6 k-8 \quad b_{0}=4(k+2) \sum a_{i}+a_{00} \quad b_{-}=-2(k+2) \sum a_{i} a_{j}$.
Here $J^{ \pm, 0}$ are the $\operatorname{sl}(2)$ generators

$$
J^{+}=\xi^{2} \mathrm{~d} / \mathrm{d} \xi-2 j \xi \quad J^{0}=\xi \mathrm{d} / \mathrm{d} \xi-j \quad J^{-}=\mathrm{d} / \mathrm{d} \xi
$$

where

$$
\begin{array}{ll}
j=\frac{1}{2} k & \text { for (3) and (4) } \\
j=\frac{1}{2} k-\frac{1}{2} & \text { for (5) and (6) } \tag{9}
\end{array}
$$

is a spin of the representation considered.
The validity of this theorem can be checked by substituting the expressions for generators into equation (7) provided conditions (3a)-(6a), (8) and (9) are satisfied.

So, each type of solution (3)-(6) corresponds to the particular spectral problem (7) with a special set of parameters. It can be easily shown that the calculation of eigenvalues λ corresponds to the solution of a characteristic equation for the fourdiagonal matrix:

$$
\begin{align*}
& A_{l, l-1}=(l-1-2 j)\left[4(j+1-l)+b_{+}\right] \\
& A_{l, l}=\left[l(2 j+1-l)\left(a_{+-}+a_{00}\right)-\left(l+j^{2}\right) a_{00}+(l-j) b_{0}\right] \\
& A_{l, l+1}=(l+1)(j-l) a_{0-}+(l+1) b_{-} \tag{10}\\
& A_{l, l+2}=-(l+1)(l+2) a_{--} .
\end{align*}
$$

The size of this matrix is $(k+1) \times(k+1)$ for (3) and (4) and $k \times k$ for (5) and (6). As a consequence of theorem 1 it is possible to prove a second theorem.

Theorem 2. The parametric $(2 n+1)$-sheet Riemannian surface of eigenvalues of equation (1) in parameter a_{i} at fixed parameters n and $a_{j}(j \neq i)$ contains four disconnected pieces: one of them corresponds to $\eta^{(1)}\left(\eta^{(4)}\right)$ solutions and the others correspond to $\eta^{(3)}\left(\eta^{(2)}\right)$. At $n=2 k$ the Riemannian subsurface for $\eta^{(1)}$ has $(k+1)$ sheets and the number in each of the others is k. At $n=2 k+1$ the number of sheets for $\eta^{(4)}$ is k and for $\eta^{(2)}$ each surface contains $(k+1)$ sheets.

It is worth emphasising that we cannot find a relation between the two-zone potential

$$
\begin{equation*}
V=-2 \sum_{i=1}^{3} \mathscr{P}\left(x-x_{i}\right) \quad \sum_{i=1}^{3} x_{i}=0 \tag{11}
\end{equation*}
$$

(see [2]) and the spectral problem (7) at $n=2$ (potential (11) is related to the Lame potential (1) by isospectral deformation). In this case eigenvalues λ do not depend on parameters a_{00}, a_{--}(see equation (8)).

However, at $n=2$ there is a spectral deformation (1) other than (11). It arises from the fact that the addition to the operator (7) of the term $a_{++} J^{-} J^{+}$does not change the characteristic matrix (10). To obtain its explicit form, one can substitute the generators $J^{ \pm, 0}$ into equation (7) with the additional term above. The resulting equation then reduces to the Schrödinger form (compare [3]). As a final result, we obtain

$$
\begin{equation*}
V(x)=a_{++}\left[2 a_{++} \xi^{6}-\left(a_{+-}+a_{00}\right) \xi^{4}-2 a_{0-} \xi^{3}-3 a_{--} \xi^{2}\right] / P_{4}^{2}(\xi)+P_{2}(\xi) \tag{12}
\end{equation*}
$$

where

$$
x=\int \frac{\mathrm{d} \xi}{\sqrt{P_{4}(\xi)}} \quad \begin{align*}
& P_{4}(\xi)=a_{++} \xi^{4}+a_{+0} \xi^{3}+\left(a_{+--}+a_{00}\right) \xi^{2}+a_{0-} \xi+a_{--} \tag{13}\\
& P_{2}(\xi)=-n(n+1) \xi+\frac{a_{00}}{4}+\frac{b_{0}}{2} .
\end{align*}
$$

In general, the potential (12) contains four double poles in x and does not reduce to (11). It is worth noting that the eigenfunctions for (12) have the form

$$
\psi(x)=\left\{\begin{array}{c}
A \xi+B \tag{14}\\
\left(\xi-a_{i}\right)^{1 / 2}\left(\xi-a_{j}\right)^{1 / 2}
\end{array}\right\} \exp \left(-a_{++} \int \frac{\xi^{3} \mathrm{~d} \xi}{P_{4}(\xi)}\right) .
$$

Here ξ is given by (13). The first five eigenvalues of the potential (12) do not depend on the parameters $a_{00}, a_{--.}, a_{++}$.

In conclusion I would like to acknowledge I M Gel'fand and S P Novikov for suggesting the problem and I M Krichiver and B A Dubrovin for useful discussions.

Note added in proof. After submitting this work for publication, I learned about the paper [4] and references therein with a rather similar representation (see (7)) of the Lame equation but in a Jacobi form. In addition, quasi-exactly-solvable problems associated with the Lame equation were also discovered in [4]. All of them belong to a general class of one-dimensional quasi-exactly-solvable problems described in [3].

References

[1] Kamke E 1974 The handbook of ordinary differential equations (Moscow: Nauka) (in Russian)
[2] Dubrovin B A and Novikov S P 1974 Zh. Eksp. Teor. Fiz. 672131
[3] Turbiner A V 1988 Commun. Math. Phys. 118467
[4] Zaslavsky O B and Ulianov V V 1987 Teor. Mat. Fiz 71260

